Integrating Solid-State Hydrogen Storage Materials into Town Planning for a Sustainable Urban Future

Speaker: Ir Dr. Alex Tsang Organization: Technological and Higher Education Institute of Hong Kong (THEi)

THEi

高科院

he

Ir Dr. Alex Tsang (MAT, CML) FIChemE, FIMMM, FIET, FHEA

Programme Leader of BSc in Green Engineering & Sustainability

Research interest: hydrogen energy, biomass energy, battery technology, green chemical production, techno-economic analysis

Climate Action

Carbon Neutral Initiatives

• Hong Kong Government initiative on Carbon Reduction:

Hong Kong plays a part to help fulfill the obligations that China has under the Paris Agreement. As such, Hong Kong will need to review our *climate change efforts* every 5 years and align them with the submission timelines under the Paris Agreement.

Hong Kong's 2030 Target: Carbon Peak

Hong Kong will <u>reduce its carbon intensity</u> by 65% to 70% using 2005 as the base. (Hong Kong's Climate Action Plan 2030+)

Green Hydrogen

高科院

he

There are many 'colors' of hydrogen – each referring to how it is produced.

Green hydrogen is the only variety produced in a climate-neutral manner.

It could play a vital role in global efforts to reach net-zero emissions by 2050.

H₂ Production Large-Scale H₂ Storage Introduction

Hydrogen Supply in Hong Kong

• Towngas

Sustainable Hydrogen in Urban Planning

The successful development of hydrogen storage solutions is essential for the penetration of hydrogen at each level of the energy supply chain, e.g. backup power, data centers, hospitals, etc.

Data Centre Power Outage Image: https://powerwhips.com

Hospital blackouts: rising death toll Image: NBC News

Water treatment plants www.wsd.gov.hk

Residential area

Airport – runway lighting www.stantec.com

Telecommunication facilities www.securitysales.com/

Emergency operations center

Large-scale H₂ storage vs battery

1. higher energy density – H_2 (39.4 kWh/kg) vs battery (0.15 - 0.39 kWh/kg) more energy per unit volume or mass \rightarrow less space

2. Scalability - H_2 relatively straightforward , battery needs adding more individual battery units \rightarrow more complex and costly

3. Long-duration storage - H_2 extended periods without significant losses, battery energy loss due to chemical reactions, leakage current and internal resistance, etc

Current Technology

- Type I: withstand only up to 50 MPa
- Type II: 30-40% lighter, steel liner
- **Type III:** liner AI, glass fiber
- Type IV: plastic liner wrapped with carbon fiber and other composite materials, lightweight, durable, and have high storage capacity (H₂ density: 5.7 wt%, 70 MPa, 40 kg/m³)

Weight

Cost

Current Technology

- High H₂ density: 70kg/m³
- Low temperature (-250°C)
- Consume up to 35% of the energy in the stored H_2
- boil-off losses
- Larger scale → less boil-off losses (∝ surface area to volume)

Offers 75% more energy per volume as a liquid than compressed gas at 70 MPa of pressure

H₂ Storage Materials (HSM) (Potential for Large-Scale Storage)

Advantages of Solid-State HSM: High H₂ storage capacity, safe, stability, portable devices and transportation

Disadvantage: Limited kinetics, require high temp/pressure, costly, cycling problem

Comparison on the volumes for 1 kg H_2 (11,200 L) in various methods and materials.

Perspectives and challenges of hydrogen storage in solid-state hydrides. Chinese Journal of Chemical Engineering 2021, 29, 1-12.

Liquid organic hydrogen carrier (LOHC)

LaNi₅H₆ (interstitial)

高科院

he

 H₂ forms metallic bonds in Interstitial hydride Materials

Advantages: Reversibility, safety *Disadvantage:* Slow kinetics, materials degradation Forklift application

3. Compressor and Dispensing system

HySA Systems Competence Centre

Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives. *International Journal of Hydrogen Energy* **2019**, *44*, 7780-7808.

 $LaNi_5H_6$ $AB_5-type alloy (1.88 wt% H_2)$

MgH₂ (non-interstitial)

MgH₂ (7.6 wt% H₂) POWERPASTE

Advantages: Abundant and low-cost, Reversibility *Disadvantage:* Slow kinetics, materials degradation, high temperature requirement

 $MgH_2 - Rutile$ structure (H/M = 2)

Direct hydrogenation of Mg metal at high pressure and temperature (200 atmospheres, 500 °C)

At 287 °C it decomposes to produce H_2 at 1 bar pressure. The high temperature required is seen as a limitation in the use of MgH₂ as a reversible hydrogen storage medium.

 $MgH_2 \rightarrow Mg + H_2$

MgH₂ also readily reacts with water to form hydrogen gas

Solid Borane Materials

Ammonia borane (NH₃BH₃) (19.6 wt%)

高科院

he

Thermolysis

Advantages: Fast kinetics, high H₂ wt% *Disadvantage:* Reversibility, cycling problem

Require an efficient catalyst!

Catalytic dehydrocoupling

 $NH_{3}BH_{3} \xrightarrow{-H_{2}} [NH_{2}BH_{2}] \xrightarrow{-H_{2}} [NH_{2}BH_{2}] \xrightarrow{-H_{2}} [NH_{2}BH_{2}] \xrightarrow{-H_{2}} [NH_{2}BH_{2}] \xrightarrow{-H_{2}} 1/n (BN)_{n}$

Catalytic hydrolysis

 $NH_3BH_3 \xrightarrow{2 H_2O} 3 H_2 + NH_4BO_2$

Solid Borane Materials Research

Chinese – An Asian Journal, 2020, 15, 3087-309.

高科院

he

10, 5580-5592.

ACS Sustainable Chemistry & Engineering 2019, 7, 9782-9792.

16

Our Research

 To use single atom strategy and past experience to solve challenging energy and emerging environmental problem.

Conclusion

- Green H₂ could further accelerate the carbon reduction in Hong Kong for sustainable urban development.
- Several options for large-scale H₂ storage, such as liquid- and solid-state storage, however, challenges such as kinetics and cycling problem need to be solved.
- 3. The manufacturing of these HSM could cause another issue in carbon emission, low-carbon chemical production has to be designed.

Acknowledgement

This research work was fully funded by Hong Kong University Grants Committee:

UGC/FDS25/E08/20 - Hydrogen on Demand – Development of Hydrogel-Based Hydrogen Generator using Single Atom Strategy for Flexible Power Devices UGC/FDS25/E04/22 - Development of Synergistic Dual-atom Catalysts with High Activity and Superior Durability for Catalytic Hydrogen Release Reactions UGC/IDS(R)25/20 - Establishment of the Centre for Interdisciplinary Research on Food By-products Utilization (CIFU) UGC/IDS(C)14/B(E)01/19 - Development of Renewable Energy for Decarbonizing and Modelling Sustainable Transport and Logistics Operations in Smart Cities of Greater Bay Area PRP/051/20FX - High-efficient Recycling of End-of-life Electric Vehicle Batteries for Energy Storage Material Regeneration

We also thank for the students and research assistant for the experimental work:

Students Desmond POON Pui-ching

Research Assistant Dr WANG Bin Dawson SUEN Wai-shun Research Group Dr. Carol LIN (CityU) Prof. Changhai LIANG (DUT)

Thank you!

